
No littering!

Bjarne Stroustrup
Morgan Stanley, Columbia University

www.stroustrup.com

Work in progress

• Not all production ready
• Some experimental
• Some conjectures

• Many parts in use

• Not Science Fiction

No littering - Stroustrup - Madrid - 2019 3

Executive summary

• We now offer complete type- and resource-safety
• No memory corruption
• No resource leaks
• No garbage collector (because there is no garbage to collect)
• No runtime overheads (Except where you need range checks)
• No new limits on expressibility
• ISO C++ (no language extensions required)
• Simpler code
• Tool enforced

• Support
• C++ Core Guidelines: https://github.com/isocpp/CppCoreGuidelines
• GSL: https://github.com/microsoft/gsl
• Static analysis/enforcement: In Microsoft Visual Studio, a bit in Clang tidy

• “C++ on steroids”
• Not some neutered subset No littering - Stroustrup - Madrid - 2019

Caveat: work in progress
4

https://github.com/isocpp/CppCoreGuidelines
https://github.com/microsoft/gsl

C++ use

• About 4.5M C++ developers
• 2007-17: increase of about 100,000 developers/year

• www.stroustrup.com/applications.html

No littering - Stroustrup - Madrid - 2019 5

The big question

• “What is good modern C++?”
• Many people want to write ”Modern C++”

• What would you like your code to look like in 5 years time?
• “Just like what I write today” is a poor answer

• Guidelines project
• https://github.com/isocpp/CppCoreGuidelines
• Produce a useful answer

• Implies tool support and enforcement
• Enable many people to use that answer

• For most programmers, not just language experts

No littering - Stroustrup - Madrid - 2019 6

https://github.com/isocpp/CppCoreGuidelines

P: Philosophical rules
• P.1: Express ideas directly in code
• P.2: Write in ISO Standard C++
• P.3: Express intent
• P.4: Ideally, a program should be statically type safe
• P.5: Prefer compile-time checking to run-time checking
• P.6: What cannot be checked at compile time should be checkable at run time
• P.7: Catch run-time errors early
• P.8: Don't leak any resources
• P.9: Don't waste time or space
• P.10: Prefer immutable data to mutable data
• P.11: Encapsulate messy constructs, rather than spreading through the code
• P.12: Use supporting tools as appropriate
• P.13: Use support libraries as appropriate

No littering - Stroustrup - Madrid - 2019 7

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-direct
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-Cplusplus
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-what
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-typesafe
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-compile-time
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-run-time
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-early
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-leak
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-waste
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-mutable
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-library
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-tools
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-lib

Resource management rule summary:

No littering - Stroustrup - Madrid - 2019 8

• R.1: Manage resources automatically using resource handles and RAII
• R.2: In interfaces, use raw pointers to denote individual objects (only)
• R.3: A raw pointer (a T*) is non-owning
• R.4: A raw reference (a T&) is non-owning
• R.5: Prefer scoped objects, don't heap-allocate unnecessarily
• R.6: Avoid non-const global variables

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-raii
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-use-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-ref
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-scoped
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-global

ES: Expressions and Statements

No littering - Stroustrup - Madrid - 2019 9

• General rules:
•ES.1: Prefer the standard library to other libraries and to "handcrafted code"
•ES.2: Prefer suitable abstractions to direct use of language features

• Declaration rules:
• ES.5: Keep scopes small
• ES.6: Declare names in for-statement initializers and conditions to limit scope
• ES.7: Keep common and local names short, and keep uncommon and nonlocal names longer
• ES.8: Avoid similar-looking names
• ES.9: Avoid ALL_CAPS names
• ES.10: Declare one name (only) per declaration
• ES.11: Use auto to avoid redundant repetition of type names
• ES.12: Do not reuse names in nested scopes
• ES.20: Always initialize an object
• ES.21: Don't introduce a variable (or constant) before you need to use it
• …

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-lib
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-abstr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-scope
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-cond
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-name-length
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-name-similar
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-not-CAPS
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-name-one
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-auto
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-reuse
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-introduce

Overview

• Pointer problems
• Memory corruption
• Resource leaks
• Expensive run-time support
• Complicated code

• The solution
• Eliminate dangling pointers
• Eliminate resource leaks
• Library support for range checking (span) and nullptr checking
• And then deal with casts and unions (variant)

No littering - Stroustrup - Madrid - 2019 10

I like pointers!

• Pointers are what the hardware offers
• Machine addresses
• For good reasons

• They are simple
• They are general
• They are fast
• They are compact

• C’s memory model has served us really well for decades
• Sequences of objects

• But pointers are not “respectable”
• Dangerous, low-level, not mathematical, …
• There is a huge ABP crowd

No littering - Stroustrup - Madrid - 2019

First element One beyond the end

11

Lifetime can be messy

• An object can have
• One reference
• Multiple references
• Circular references
• No references (leaked)
• Reference after deletion (dangling pointer)

No littering - Stroustrup - Madrid - 2019 12

Ownership can be messy

No littering - Stroustrup - Madrid - 2019

static on stack memberon heap

• An object can be
• on stack (automatically freed)
• on free store (must be freed)
• in static store (must never be freed)
• in another object

13

c

Resource management can be messy

No littering - Stroustrup - Madrid - 2019

Thread
id Lock id

Map key

Lock id

• Objects are not just memory
• Sometimes, significant cleanup is needed

• File handles
• Thread handles
• Locks
• … 14

Access can be messy

• Pointers can
• point outside an object (range error)
• be a nullptr (useful, but don’t dereference)
• be unititialized (bad idea)
• Point to memory formerly used by an object that has been deleted

No littering - Stroustrup - Madrid - 2019 15

Eliminate all leaks and all memory corruption

• Every object is constructed before use
• Once only

• Every fully constructed object is destroyed
• Once (and only once)
• Every object allocated by new must be deleted (once and only once)
• No scoped object must be deleted (it is implicitly destroyed)

• No access through a pointer that does not point to an object
• Read or write
• Off the end of an object (out of range)
• To deleted object
• To “random” place in memory (e.g., uninitialized pointer)
• Through nullptr (originally: “there is no object at address zero”)
• That has gone out of scope

No littering - Stroustrup - Madrid - 2019 16

Current (Partial) Solutions

• Ban or seriously restrict pointers
• Add indirections everywhere
• Add checking everywhere

• Manual memory management
• Combined with manual non-memory resource management

• Garbage collectors
• Plus manual non-memory resource management

• Static analysis
• To supplement manual memory management

• “Smart” pointers
• Starting with counted pointers

• Functional Programming
• Eliminate pointers No littering - Stroustrup - Madrid - 2019 17

Current (Partial) Solutions

• These are old problems and old solutions
• 40+ years

• Manual resource management doesn’t scale
• Smart pointers add complexity and cost
• Garbage collection is at best a partial solution

• Doesn’t handle non-memory solutions (“finalizers are evil”)
• Is expensive at run time
• Is non-local (systems are often distributed)
• Introduces non-predictability

• Static analysis doesn’t scale
• Gives false positives (warning of a construct that does not lead to an error)
• Doesn’t handle dynamic linking and other dynamic phenomena
• Is expensive at compile time

No littering - Stroustrup - Madrid - 2019 18

Constraints on the solution

• I want it now
• I don’t want to invent a new language
• I don’t want to wait for a new standard

• I want it guaranteed
• “Be careful” isn’t good enough

• Don’t sacrifice
• Generality
• Performance
• Simplicity
• Portability

No littering - Stroustrup - Madrid - 2019 19

A solution

• Be precise about ownership
• Don’t litter
• Offer static guarantee of release/destruction

• Eliminate dangling pointers
• Static guarantee (run-time is too late)

• Make general resource management implicit
• Hide every explicit delete/destroy/close/release
• “lots of explicit annotations” doesn’t scale

• becomes a source of bugs

• Test for nullptr and range
• Minimize run-time checking
• Use checked library types

• Avoid other problems with pointers
• Avoid cast and un-tagged unions

No littering - Stroustrup - Madrid - 2019 20

No resource leaks

• We know how
• Root every object in a scope

• vector<T>
• string
• ifstream
• unique_ptr<T>
• shared_ptr<T>
• lock_guard<T>

• RAII
• “No naked new”
• “No naked delete”

• Constructor/destructor
• “since 1979, and still the best”

No littering - Stroustrup - Madrid - 2019 21

Dangling pointers

• One nasty variant of the problem

void f(X* p)
{

// …
delete p; // looks innocent enough

}

void g()
{

X* q = new X; // looks innocent enough
f(q);
// … do a lot of work here …
q->use(); // Ouch! Read/scramble random memory

} No littering - Stroustrup - Madrid - 2019 22

Dangling pointers

• We must eliminate dangling pointers
• Or type safety is compromised
• Or memory safety is compromised
• Or resource safety is compromised

• Eliminated by a combination of rules
• Distinguish owners from non-owners

• Non-owner: T*
• Primitive: gsl::owner<T*>
• Best: vector<T>, unique_ptr<T>, …
• Something that holds an owner is an owner
• Don’t forget malloc(), etc.

• Catch every attempt for a pointer to “escape” into a scope enclosing its owner’s scope
• return, throw, out-parameters, long-lived containers, …

No littering - Stroustrup - Madrid - 2019 23

Dangling pointers

• Ensure that no pointer outlives the object it points to

void f(X* p)
{

// …
delete p; // bad: delete non-owner

}

void g()
{

X* q = new X; // bad: assign object to non-owner
f(q);
// … do a lot of work here …
q->use(); // we never get here

} No littering - Stroustrup - Madrid - 2019 24

How to avoid/catch dangling pointers

• Rules (giving pointer safety):
• Basic rule: no pointer must outlive the object it points to
• Practical rules

• Don’t transfer to pointer-to-a-local to where it could be accessed by a caller
• A pointer passed as an argument can be passed back as a result

• Essential for real-world pointer use
• A pointer obtained from new can be passed back

• But we have to remember to eventually delete it

int* f(int* p)
{

int x = 4;
return &x; // No! would point to destroyed stack frame
return new int{7}; // OK: doesn’t dangle, but we must “remember” to delete
return p; // OK: came from caller

}
No littering - Stroustrup - Madrid - 2019 25

Owners and pointers
• Every object has one owner
• An object can have many pointers to it
• No pointer can outlive the scope of the owner it points to

No littering - Stroustrup - Madrid - 2019

owner

Object

pointer

pointer

pointer

Call stack
Object

owner

• For an object on the free store the owner is a pointer
• For a scoped object the owner is the scope
• For a member object the owner is the enclosing object

pointer

26

How do we manage ownership?

• High-level: Use an ownership abstraction
• Simple and preferred

• E.g., unique_ptr, shared_ptr, vector, and map

• Low-level: mark owning pointers owner
• An owner must be deleted or passed to another owner
• A non-owner may not be deleted
• This is essential in places but does not scale
• Applies to both pointers and references

No littering - Stroustrup - Madrid - 2019 27

How do we represent ownership?

• Mark an owning T*: gsl::owner<T*>
• Initial idea (2005 and before)

• Yet another kind of “smart pointer”
• owner<T*> would hold a T* and an “owner bit”
• Costly: bit manipulation
• Not ABI compatible
• Not C compatible
• Finds errors too late (at run time)

• So gsl::owner
• Is a handle for static analysis
• Is documentation
• Is not a type with it’s own operations
• Incurs no run-time cost (time or space)
• Is ABI compatible
• template<typename T> using owner = T;No littering - Stroustrup - Madrid - 2019 28

GSL is our Guidelines Support Library

How do we manage ownership?

• owner is intended to simplify static analysis
• Necessary inside ownership abstractions
• owners in application code is a sign of a problem

• Usually, C-style interfaces

• “Lots of annotations” doesn’t scale
• Becomes a source of errors

• owner<T*> is just an alias for T*
• template<T> using owner = T;

No littering - Stroustrup - Madrid - 2019 29

GSL: owner<T>

• How do we implement ownership abstractions?
template<SemiRegular T>
class vector {
public:

// …
private:

owner<T*> elem; // the anchors the allocated memory
T* space; // just a position indicator
T* end; // just a position indicator
// …

};

No littering - Stroustrup - Madrid - 2019 30

GSL: owner<T>

• How about code we cannot change?
• ABI stability

void foo(owner<int*>); // foo requires an owner

void f(owner<int*> p, int* q, owner<int*> p2, int* q2)
{

foo(p); // OK: transfer ownership
foo(q); // bad: q is not an owner
delete p2; // necessary
delete q2; // bad: not an owner

}

• A static analysis tool can tell us where our code mishandles ownership
No littering - Stroustrup - Madrid - 2019 31

Our solution: A cocktail of techniques

• Not a single neat miracle cure
• Rules (from the “Core C++ Guidelines”)

• Statically enforced
• Libraries (STL, GSL)

• So that we don’t have to directly use the messy parts of C++
• Reliance on the type system

• The compiler is your friend
• Static analysis

• To extend the type system

• None of those techniques is sufficient by itself
• Enforces basic ISO C++ language rules
• Not just for C++

• But the “cocktail” relies on much of C++
No littering - Stroustrup - Madrid - 2019 32

Details (aka engineering)
• “Invention is 1% inspiration and 99% perspiration” – T. Edison

• The simple lifetime and ownership model needs to be enforced by many dozens
of detailed checks

• Be comprehensive
• Minimize false positives
• Scale to industrial programs

• Fast analysis is essential – local analysis only
• Allow for gradual adoption
• Provide coherent toolsets for all platforms

No littering - Stroustrup - Madrid - 2019 33

“Static” is not quite as flexible as “dynamic”

• Classify pointers according to lifetime
int glob = 666;

vector<int*> f(int* p) // ignore ownership for now
{

int x = 4;
int* q = new int{7};
vector<int*> res = {p, &x, q, &glob}; // potentially bad: mix lifetimes
return res; // Bad: return { unknown, &local, free store, &global }

}

• Don’t mix different lifetimes in an array (overly conservative?)
• If you must, encapsulate

• Don’t let return statements mix lifetimes

No littering - Stroustrup - Madrid - 2019 34

“Static” is not quite as flexible as “dynamic”

• Classify pointers according to ownership
int glob = 666;

vector<int*> f(int* p)
{

int x = 4;
owner<int*> q = new int{7};
vector<int*> res = {p, &x, q, &glob}; // potentially bad: mix ownership
return res; // Bad: return {unknown, &local, &owner, &global}

}

• Don’t mix different ownerships in an array
• If you must, encapsulate

• Don’t let different return statements mix ownership

No littering - Stroustrup - Madrid - 2019 35

Ownership and pointers

• Owners are a tree
• Except for shared_ptr: a DAG
• Simple
• efficient
• Minimal resource retention
• No ownership cycles

• Owners can be invalidated
• Catch simple cases at compile time
• Use shared_ptr and/or nullptr checks for not-so-simple cases

• Pointers
• can only refer to live objects

• To objects with a live owner
• To objects “back or to the same level” in a stack

• can have cycles
No littering - Stroustrup - Madrid - 2019 36

Research problem:
How do you represent
a safe, general, and efficient
Graph?

Concurrency

• Use scopes and shared_ptr to keep threads alive as needed
• A tread is a container (of pointers)

• The usual rules for containers of pointers apply
• std::tread

• May or may not outlive its scope
• Bad
• we must conservatively assume that it lives forever

• gsl::joining_thread
• Joins

• so it is a local container
• stl:jthread?

• CP.26: Don't detach() a thread
• If you do, you lose lifetime information

No littering - Stroustrup - Madrid - 2019 37

Owner invalidation

• Some cases are simple

void f()
{

auto p = new int{7};
delete p; // invalidate p
*p = 9; // bad: must be prevented

}

• Such examples can be handled by static analysis
• Avoid “naked new” and “naked delete”

No littering - Stroustrup - Madrid - 2019 38

Owner invalidation

• Some cases are less simple

void g(int* q) { *q = 9; } // looks innocent

void f()
{

vecor<int> v {7};
gsl::joining_thread(g,&v[0]);
v.push_back(11); // invalidates q
// …

}

• Such examples can be handled by static analysis
• Avoid unscoped threads
• In an emergency, use shared_ptr to defeat “false positives”

No littering - Stroustrup - Madrid - 2019 39

Why not “just use smart pointers”?

• Complexity and (sometimes) cost
• E.g., different versions of functions for different kinds of pointers

• Use only when you need to manipulate ownership
• unique_ptr for unique ownership

• guard against exceptions
• Return pointer-to-base in OOP

• shared_ptr for shared ownership
• For cases where you can’t identify a single owner
• Not for guarding against exceptions
• Not for returning objects from the free store
• More expensive that raw pointers – use counts
• Can led to need for weak_ptrs
• Can lead to “GC delays”

• Remember
• Local variables (e.g., handles)
• Move semantics

No littering - Stroustrup - Madrid - 2019 40

Static analysis (integrated)

No littering - Stroustrup - Madrid - 2019 41

Dangling pointer summary

• Simple:
• Never let a “pointer” escape to where it can refer to its object after that object is destroyed

• It’s not just pointers
• All ways of “escaping”

• return, throw, place in long-lived container, threads, …
• Same for containers of pointers

• E.g. vector<int*>, unique_ptr<int>, threads, iterators, built-in arrays, …
• Same for references

• We need a formal paper/proof
• We need to demonstrate scaling

• 1M line code bases (some examples done)

No littering - Stroustrup - Madrid - 2019 42

Other problems

• Other ways of breaking the type system
• Unions: use std::variant
• Casts: don’t use them outside abstractions
• …

• Other ways of misusing pointers
• Range errors: use gsl::span<T>
• nullptr dereferencing: use gsl::not_null<T>

• Wasteful ways of addressing pointer problems
• Misuse of smart pointers

• …
• “Just test everywhere at run time” is not an acceptable answer

• We want comprehensive guidelines
No littering - Stroustrup - Madrid - 2019 43

gsl::span<T>

• Common interface style
• major source of bugs
void f(int* p, int n) // what is n? (How would a tool know?)
{

p[7] = 9; // OK?
for (int i=0; i<n; ++i) p[i] = 7; // OK?

}

• Better
void f(span<int> a)
{

a[7] = 9; // OK? Checkable against a.size()
for (int& x : a) x = 7; // OK

}

No littering - Stroustrup - Madrid - 2019 44

gsl::span<T>

• Common style
void f(int* p, int n);
int a[100];
// …
f(a,100);
f(a,1000); // likely disaster

No littering - Stroustrup - Madrid - 2019

• Better
void f(span<int> a)
int a[100];
// …
f(span<int>{a});
f(a);
f({a,1000}); // easily checkable

• “Make simple things simple”
• Simpler than “old style”
• Shorter
• At least as fast

45

nullptr problems

• Mixing nullptr and pointers to objects
• Causes confusion
• Requires (systematic) checking

• Caller
void f(char*);

f(nullptr); // OK?
• Implementer

void f(char* p)
{

if (p==nullptr) // necessary?
// …

}
• Can you trust the documentation?
• Compilers don’t read manuals, or comments
• Complexity, errors, and/or run-time cost

No littering - Stroustrup - Madrid - 2019 46

gsl::not_null<T>

• Caller
void f(not_null<char*>);

f(nullptr); // Obvious error: caught be static analysis
char* p = nullptr;
f(p); // Constructor for not_null can catch the error

• Implementer
void f(not_null<char*> p)
{

// if (p==nullptr) // not necessary
// …

}

No littering - Stroustrup - Madrid - 2019 47

gsl::not_null<T>

• not_null<T>
• A simple, small class

• Should it be an alias like owner?
• not_null<T*> is T* except that it cannot hold nullptr
• Can be used as input to analyzers

• Minimize run-time checking
• Checking can be “debug only”
• For any T that can be compared to nullptr

No littering - Stroustrup - Madrid - 2019 48

To summarize

• Type and resource safety:
• RAII (scoped objects with constructors and destructors)
• No dangling pointers
• No leaks (track ownership pointers)
• Eliminate range errors
• Eliminate nullptr dereference

• That done, we attack other sources of problems
• Logic errors
• Performance bugs
• Maintenance hazards
• Verbosity
• …

No littering - Stroustrup - Madrid - 2019 49

We are not unambitious (rough seas ahead)

• Type and resource safety
• No leaks
• No dangling pointers

• No bad accesses
• No range errors
• No use of uninitialized objects
• No misuse of

• Casts
• Unions

• We think we can do it
• At scale

• 4+ million C++ Programmers, N billion lines of code
• Zero-overhead principle

No littering - Stroustrup - Madrid - 2019 50

Questions?

• Type- and Resource-safe C++
• No garbage collector (because there is no garbage to collect)
• No runtime overheads (Except necessary range checks)
• No new limits on expressibility
• ISO C++
• Simpler code

No littering - Stroustrup - Madrid - 2019 51

Current state: the game is changing dramatically

• Papers
• B. Stroustrup, H. Sutter, G. Dos Reis: A brief introduction to C++'s model for type- and resource-safety.
• H. Sutter and N. MacIntosh: Preventing Leaks and Dangling
• T. Ramananandro, G. Dos Reis, X Leroy: A Mechanized Semantics for C++ Object Construction and

Destruction, with Applications to Resource Management

• Code (MIT license)
• https://github.com/isocpp/CppCoreGuidelines
• https://github.com/microsoft/gsl
• Static analysis: experimental versions available (Microsoft)

• Videos
• B. Stroustrup: : Writing Good C++ 14
• H. Sutter: Writing good C++ 14 By Default
• G. Dos Reis: Contracts for Dependable C++
• N. MacIntosh: Static analysis and C++: more than lint
• N. MacIntosh: A few good types: Evolving array_view and string_view for safe C++ code

No littering - Stroustrup - Madrid - 2019 52

C++ Information
• The C++ Foundation: www.isocpp.org

• Standards information, articles, user-group information

• Bjarne Stroustrup: www.stroustrup.com
• Publication list, C++ libraries, FAQs, etc.
• A Tour of C++ (2nd edition): All of C++ in 240 pages
• The C++ Programming Language (4th edition): All of C++ in 1,300 pages
• Programming: Principles and Practice using C++ (2nd edition): A textbook

• The ISO C++ Standards Committee: www.open-std.org/jtc1/sc22/wg21/
• All committee documents (incl. proposals)

• Videos
• Cppcon: https://www.youtube.com/user/CppCon 2014, 2015
• Going Native: http://channel9.msdn.com/Events/GoingNative/ 2012, 2013

• Guidelines: https://github.com/isocpp/CppCoreGuidelines

No littering - Stroustrup - Madrid - 2019 53

http://www.isocpp.org/
http://www.stroustrup.com/
http://www.open-std.org/jtc1/sc22/wg21/
https://www.youtube.com/user/CppCon%202014
http://channel9.msdn.com/Events/GoingNative/
https://github.com/isocpp/CppCoreGuidelines

	No littering!
	Work in progress
	Executive summary
	C++ use
	The big question
	P: Philosophical rules
	Resource management rule summary:
	ES: Expressions and Statements�
	Overview
	I like pointers!
	Lifetime can be messy
	Ownership can be messy
	Resource management can be messy
	Access can be messy
	Eliminate all leaks and all memory corruption
	Current (Partial) Solutions
	Current (Partial) Solutions
	Constraints on the solution
	A solution
	No resource leaks
	Dangling pointers
	Dangling pointers
	Dangling pointers
	How to avoid/catch dangling pointers
	Owners and pointers
	How do we manage ownership?
	How do we represent ownership?
	How do we manage ownership?
	GSL: owner<T>
	GSL: owner<T>
	Our solution: A cocktail of techniques
	Details (aka engineering)
	“Static” is not quite as flexible as “dynamic”
	“Static” is not quite as flexible as “dynamic”
	Ownership and pointers
	Concurrency
	Owner invalidation
	Owner invalidation
	Why not “just use smart pointers”?
	Static analysis (integrated)
	Dangling pointer summary
	Other problems
	gsl::span<T>
	gsl::span<T>
	nullptr problems
	gsl::not_null<T>
	gsl::not_null<T>
	To summarize
	We are not unambitious (rough seas ahead)
	Questions?
	Current state: the game is changing dramatically
	C++ Information

