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Work in progress

• Not all production ready
• Some experimental
• Some conjectures

• Many parts in use

• Not Science Fiction

No littering - Stroustrup - Madrid - 2019 3



Executive summary

• We now offer complete type- and resource-safety
• No memory corruption
• No resource leaks
• No garbage collector (because there is no garbage to collect)
• No runtime overheads (Except where you need range checks)
• No new limits on expressibility
• ISO C++ (no language extensions required)
• Simpler code
• Tool enforced

• Support
• C++ Core Guidelines: https://github.com/isocpp/CppCoreGuidelines
• GSL: https://github.com/microsoft/gsl
• Static analysis/enforcement: In Microsoft Visual Studio, a bit in Clang tidy

• “C++ on steroids”
• Not some neutered subset No littering - Stroustrup - Madrid - 2019

Caveat: work in progress
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C++ use

• About 4.5M C++ developers
• 2007-17: increase of about 100,000 developers/year

• www.stroustrup.com/applications.html
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The big question

• “What is good modern C++?”
• Many people want to write ”Modern C++”

• What would you like your code to look like in 5 years time?
• “Just like what I write today” is a poor answer

• Guidelines project
• https://github.com/isocpp/CppCoreGuidelines
• Produce a useful answer

• Implies tool support and enforcement
• Enable many people to use that answer

• For most programmers, not just language experts

No littering - Stroustrup - Madrid - 2019 6

https://github.com/isocpp/CppCoreGuidelines


P: Philosophical rules
• P.1: Express ideas directly in code
• P.2: Write in ISO Standard C++
• P.3: Express intent
• P.4: Ideally, a program should be statically type safe
• P.5: Prefer compile-time checking to run-time checking
• P.6: What cannot be checked at compile time should be checkable at run time
• P.7: Catch run-time errors early
• P.8: Don't leak any resources
• P.9: Don't waste time or space
• P.10: Prefer immutable data to mutable data
• P.11: Encapsulate messy constructs, rather than spreading through the code
• P.12: Use supporting tools as appropriate
• P.13: Use support libraries as appropriate
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https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-direct
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-Cplusplus
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-what
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-typesafe
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-compile-time
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-run-time
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-early
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-leak
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-waste
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-mutable
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-library
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-tools
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rp-lib


Resource management rule summary:
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• R.1: Manage resources automatically using resource handles and RAII 
• R.2: In interfaces, use raw pointers to denote individual objects (only)
• R.3: A raw pointer (a T*) is non-owning
• R.4: A raw reference (a T&) is non-owning
• R.5: Prefer scoped objects, don't heap-allocate unnecessarily
• R.6: Avoid non-const global variables

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-raii
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-use-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-ptr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-ref
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-scoped
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-global


ES: Expressions and Statements
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• General rules:
•ES.1: Prefer the standard library to other libraries and to "handcrafted code"
•ES.2: Prefer suitable abstractions to direct use of language features

• Declaration rules:
• ES.5: Keep scopes small
• ES.6: Declare names in for-statement initializers and conditions to limit scope
• ES.7: Keep common and local names short, and keep uncommon and nonlocal names longer
• ES.8: Avoid similar-looking names
• ES.9: Avoid ALL_CAPS names
• ES.10: Declare one name (only) per declaration
• ES.11: Use auto to avoid redundant repetition of type names
• ES.12: Do not reuse names in nested scopes
• ES.20: Always initialize an object
• ES.21: Don't introduce a variable (or constant) before you need to use it
• …

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-lib
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-abstr
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-scope
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-cond
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-name-length
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-name-similar
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-not-CAPS
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-name-one
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-auto
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-reuse
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-always
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Res-introduce


Overview

• Pointer problems
• Memory corruption
• Resource leaks
• Expensive run-time support
• Complicated code

• The solution
• Eliminate dangling pointers
• Eliminate resource leaks
• Library support for range checking (span) and nullptr checking
• And then deal with casts and unions (variant)
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I like pointers!

• Pointers are what the hardware offers
• Machine addresses
• For good reasons

• They are simple
• They are general
• They are fast
• They are compact

• C’s memory model has served us really well for decades
• Sequences of objects

• But pointers are not “respectable”
• Dangerous, low-level, not mathematical, …
• There is a huge ABP crowd
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First element One beyond the end
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Lifetime can be messy

• An object can have 
• One reference
• Multiple references
• Circular references
• No references (leaked)
• Reference after deletion (dangling pointer)
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Ownership can be messy
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static on stack memberon heap

• An object can be
• on stack (automatically freed)
• on free store (must be freed)
• in static store (must never be freed)
• in another object
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c

Resource management can be messy
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Thread 
id Lock id

Map key

Lock id

• Objects are not just memory
• Sometimes, significant cleanup is needed

• File handles
• Thread handles
• Locks
• … 14



Access can be messy

• Pointers can
• point outside an object (range error)
• be a nullptr (useful, but don’t dereference)
• be unititialized (bad idea)
• Point to memory formerly used by an object that has been deleted
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Eliminate all leaks and all memory corruption

• Every object is constructed before use
• Once only

• Every fully constructed object is destroyed
• Once (and only once)
• Every object allocated by new must be deleted (once and only once)
• No scoped object must be deleted (it is implicitly destroyed)

• No access through a pointer that does not point to an object
• Read or write
• Off the end of an object (out of range)
• To deleted object
• To “random” place in memory (e.g., uninitialized pointer)
• Through nullptr (originally: “there is no object at address zero”)
• That has gone out of scope
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Current (Partial) Solutions

• Ban or seriously restrict pointers
• Add indirections everywhere
• Add checking everywhere

• Manual memory management
• Combined with manual non-memory resource management

• Garbage collectors
• Plus manual non-memory resource management

• Static analysis
• To supplement manual memory management

• “Smart” pointers
• Starting with counted pointers

• Functional Programming
• Eliminate pointers No littering - Stroustrup - Madrid - 2019 17



Current (Partial) Solutions

• These are old problems and old solutions
• 40+ years

• Manual resource management doesn’t scale
• Smart pointers add complexity and cost
• Garbage collection is at best a partial solution

• Doesn’t handle non-memory solutions (“finalizers are evil”)
• Is expensive at run time
• Is non-local (systems are often distributed)
• Introduces non-predictability

• Static analysis doesn’t scale
• Gives false positives (warning of a construct that does not lead to an error)
• Doesn’t handle dynamic linking and other dynamic phenomena
• Is expensive at compile time
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Constraints on the solution

• I want it now
• I don’t want to invent a new language
• I don’t want to wait for a new standard

• I want it guaranteed
• “Be careful” isn’t good enough

• Don’t sacrifice
• Generality
• Performance
• Simplicity
• Portability

No littering - Stroustrup - Madrid - 2019 19



A solution

• Be precise about ownership
• Don’t litter
• Offer static guarantee of release/destruction

• Eliminate dangling pointers
• Static guarantee (run-time is too late)

• Make general resource management implicit
• Hide every explicit delete/destroy/close/release
• “lots of explicit annotations” doesn’t scale

• becomes a source of bugs

• Test for nullptr and range
• Minimize run-time checking
• Use checked library types

• Avoid other problems with pointers
• Avoid cast and un-tagged unions
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No resource leaks

• We know how
• Root every object in a scope

• vector<T>
• string
• ifstream
• unique_ptr<T>
• shared_ptr<T>
• lock_guard<T>

• RAII
• “No naked new”
• “No naked delete”

• Constructor/destructor
• “since 1979, and still the best”
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Dangling pointers

• One nasty variant of the problem

void f(X* p)
{

// …
delete p; // looks innocent enough

}

void g()
{

X* q = new X; // looks innocent enough
f(q);
// … do a lot of work here … 
q->use(); // Ouch! Read/scramble random memory

} No littering - Stroustrup - Madrid - 2019 22



Dangling pointers

• We must eliminate dangling pointers
• Or type safety is compromised
• Or memory safety is compromised
• Or resource safety is compromised

• Eliminated by a combination of rules
• Distinguish owners from non-owners

• Non-owner: T*
• Primitive: gsl::owner<T*>
• Best: vector<T>, unique_ptr<T>, …
• Something that holds an owner is an owner
• Don’t forget malloc(), etc.

• Catch every attempt for a pointer to “escape” into a scope enclosing its owner’s scope
• return, throw, out-parameters, long-lived containers, …
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Dangling pointers

• Ensure that no pointer outlives the object it points to

void f(X* p)
{

// …
delete p; // bad: delete non-owner

}

void g()
{

X* q = new X; // bad: assign object to non-owner
f(q);
// … do a lot of work here … 
q->use(); // we never get here

} No littering - Stroustrup - Madrid - 2019 24



How to avoid/catch dangling pointers

• Rules (giving pointer safety):
• Basic rule: no pointer must outlive the object it points to
• Practical rules

• Don’t transfer to pointer-to-a-local to where it could be accessed by a caller
• A pointer passed as an argument can be passed back as a result

• Essential for real-world pointer use
• A pointer obtained from new can be passed back

• But we have to remember to eventually delete it

int*  f(int* p)
{

int x = 4;
return &x; // No! would point to destroyed stack frame
return new int{7}; // OK: doesn’t dangle, but we must “remember” to delete
return p; // OK: came from caller

}
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Owners and pointers
• Every object has one owner
• An object can have many pointers to it 
• No pointer can outlive the scope of the owner it points to

No littering - Stroustrup - Madrid - 2019

owner

Object

pointer

pointer

pointer

Call stack
Object

owner    

• For an object on the free store the owner is a pointer
• For a scoped object the owner is the scope
• For a member object the owner is the enclosing object

pointer
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How do we manage ownership?

• High-level: Use an ownership abstraction
• Simple and preferred

• E.g., unique_ptr, shared_ptr, vector, and map

• Low-level: mark owning pointers owner
• An owner must be deleted or passed to another owner
• A non-owner may not be deleted
• This is essential in places but does not scale
• Applies to both pointers and references
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How do we represent ownership?

• Mark an owning T*: gsl::owner<T*>
• Initial idea (2005 and before)

• Yet another kind of “smart pointer”
• owner<T*> would hold a T* and an “owner bit”
• Costly: bit manipulation
• Not ABI compatible
• Not C compatible
• Finds errors too late (at run time)

• So gsl::owner
• Is a handle for static analysis
• Is documentation
• Is not a type with it’s own operations
• Incurs no run-time cost (time or space)
• Is ABI compatible 
• template<typename T> using owner = T;No littering - Stroustrup - Madrid - 2019 28

GSL is our Guidelines Support Library



How do we manage ownership?

• owner is intended to simplify static analysis
• Necessary inside ownership abstractions
• owners in application code is a sign of a problem 

• Usually, C-style interfaces

• “Lots of annotations” doesn’t scale
• Becomes a source of errors

• owner<T*> is just an alias for T*
• template<T> using owner = T;

No littering - Stroustrup - Madrid - 2019 29



GSL: owner<T>

• How do we implement ownership abstractions? 
template<SemiRegular T>
class vector {
public:

// …
private:

owner<T*> elem; // the anchors the allocated memory
T* space; // just a position indicator
T* end; // just a position indicator
// …

};
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GSL: owner<T>

• How about code we cannot change?
• ABI stability

void foo(owner<int*>); // foo requires an owner

void f(owner<int*> p, int* q, owner<int*> p2, int* q2)
{

foo(p); // OK: transfer ownership
foo(q); // bad: q is not an owner
delete p2; // necessary
delete q2; // bad: not an owner

}

• A static analysis tool can tell us where our code mishandles ownership
No littering - Stroustrup - Madrid - 2019 31



Our solution: A cocktail of techniques

• Not a single neat miracle cure
• Rules (from the “Core C++ Guidelines”)

• Statically enforced
• Libraries (STL, GSL)

• So that we don’t have to directly use the messy parts of C++
• Reliance on the type system

• The compiler is your friend
• Static analysis

• To extend the type system

• None of those techniques is sufficient by itself
• Enforces basic ISO C++ language rules
• Not just for C++

• But the “cocktail” relies on much of C++
No littering - Stroustrup - Madrid - 2019 32



Details (aka engineering)
• “Invention is 1% inspiration and 99% perspiration” – T. Edison

• The simple lifetime and ownership model needs to be enforced by many dozens 
of detailed checks

• Be comprehensive
• Minimize false positives
• Scale to industrial programs

• Fast analysis is essential – local analysis only
• Allow for gradual adoption
• Provide coherent toolsets for all platforms
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“Static” is not quite as flexible as “dynamic”

• Classify pointers according to lifetime
int glob = 666;

vector<int*> f(int* p) // ignore ownership for now
{

int x = 4;
int* q = new int{7}; 
vector<int*> res = {p, &x, q, &glob}; // potentially bad: mix lifetimes
return res; // Bad: return { unknown, &local, free store, &global }

}

• Don’t mix different lifetimes in an array (overly conservative?)
• If you must, encapsulate

• Don’t let return statements mix lifetimes
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“Static” is not quite as flexible as “dynamic”

• Classify pointers according to ownership
int glob = 666;

vector<int*> f(int* p)
{

int x = 4;
owner<int*> q = new int{7};
vector<int*> res = {p, &x, q, &glob}; // potentially bad: mix ownership
return res; // Bad: return {unknown, &local, &owner, &global}

}

• Don’t mix different ownerships in an array
• If you must, encapsulate

• Don’t let different return statements mix ownership
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Ownership and pointers

• Owners are a tree
• Except for shared_ptr: a DAG
• Simple
• efficient
• Minimal resource retention
• No ownership cycles

• Owners can be invalidated
• Catch simple cases at compile time
• Use shared_ptr and/or nullptr checks for not-so-simple cases

• Pointers
• can only refer to live objects

• To objects with a live owner
• To objects “back or to the same level” in a stack

• can have cycles
No littering - Stroustrup - Madrid - 2019 36

Research problem:
How do you represent
a safe, general, and efficient
Graph?



Concurrency

• Use scopes and shared_ptr to keep threads alive as needed
• A tread is a container (of pointers)

• The usual rules for containers of pointers apply
• std::tread

• May or may not outlive its scope
• Bad
• we must conservatively assume that it lives forever

• gsl::joining_thread
• Joins

• so it is a local container 
• stl:jthread?

• CP.26: Don't detach() a thread
• If you do, you lose lifetime information
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Owner invalidation

• Some cases are simple

void f()
{

auto p = new int{7};
delete p; // invalidate p
*p = 9; // bad: must be prevented

}

• Such examples can be handled by static analysis
• Avoid “naked new” and “naked delete” 
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Owner invalidation

• Some cases are less simple

void g(int* q) { *q = 9; } // looks innocent

void f()
{

vecor<int> v {7};
gsl::joining_thread(g,&v[0]);
v.push_back(11); // invalidates q
// …

} 

• Such examples can be handled by static analysis
• Avoid unscoped threads
• In an emergency, use shared_ptr to defeat “false positives” 
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Why not “just use smart pointers”?

• Complexity and (sometimes) cost
• E.g., different versions of functions for different kinds of pointers

• Use only when you need to manipulate ownership
• unique_ptr for unique ownership

• guard against exceptions
• Return pointer-to-base in OOP

• shared_ptr for shared ownership
• For cases where you can’t identify a single owner 
• Not for guarding against exceptions
• Not for returning objects from the free store
• More expensive that raw pointers – use counts
• Can led to need for weak_ptrs
• Can lead to “GC delays”

• Remember
• Local variables (e.g., handles)
• Move semantics
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Static analysis (integrated)
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Dangling pointer summary

• Simple:
• Never let a “pointer” escape to where it can refer to its object after that object is destroyed

• It’s not just pointers
• All ways of “escaping”

• return, throw, place in long-lived container, threads, …
• Same for containers of pointers

• E.g. vector<int*>, unique_ptr<int>, threads, iterators, built-in arrays, …
• Same for references

• We need a formal paper/proof
• We need to demonstrate scaling

• 1M line code bases (some examples done)
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Other problems

• Other ways of breaking the type system
• Unions: use std::variant
• Casts: don’t use them outside abstractions
• …

• Other ways of misusing pointers
• Range errors: use gsl::span<T>
• nullptr dereferencing: use gsl::not_null<T>

• Wasteful ways of addressing pointer problems
• Misuse of smart pointers

• …
• “Just test everywhere at run time” is not an acceptable answer

• We want comprehensive guidelines
No littering - Stroustrup - Madrid - 2019 43



gsl::span<T>

• Common interface style
• major source of bugs
void f(int* p, int n) // what is n? (How would a tool know?)
{

p[7] = 9; // OK?
for (int i=0; i<n; ++i) p[i] = 7; // OK?

}

• Better
void f(span<int> a)
{

a[7] = 9; // OK? Checkable against a.size()
for (int& x : a) x = 7; // OK

}
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gsl::span<T>

• Common style
void f(int* p, int n);
int a[100];
// …
f(a,100);
f(a,1000); // likely disaster

No littering - Stroustrup - Madrid - 2019

• Better
void f(span<int> a)
int a[100];
// …
f(span<int>{a});
f(a); 
f({a,1000}); // easily checkable

• “Make simple things simple”
• Simpler than “old style”
• Shorter
• At least as fast

45



nullptr problems

• Mixing nullptr and pointers to objects
• Causes confusion
• Requires (systematic) checking

• Caller
void f(char*);

f(nullptr); // OK?
• Implementer

void f(char* p)
{

if (p==nullptr) // necessary?
// …

}
• Can you trust the documentation?
• Compilers don’t read manuals, or comments
• Complexity, errors, and/or run-time cost
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gsl::not_null<T>

• Caller
void f(not_null<char*>);

f(nullptr); // Obvious error: caught be static analysis
char* p = nullptr;
f(p); // Constructor for not_null can catch the error

• Implementer
void f(not_null<char*> p)
{

// if (p==nullptr) // not necessary
// …

}
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gsl::not_null<T>

• not_null<T>
• A simple, small class

• Should it be an alias like owner?
• not_null<T*> is T* except that it cannot hold nullptr
• Can be used as input to analyzers

• Minimize run-time checking 
• Checking can be “debug only”
• For any T that can be compared to nullptr
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To summarize

• Type and resource safety:
• RAII (scoped objects with constructors and destructors)
• No dangling pointers
• No leaks (track ownership pointers)
• Eliminate range errors
• Eliminate nullptr dereference

• That done, we attack other sources of problems
• Logic errors
• Performance bugs
• Maintenance hazards
• Verbosity 
• …
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We are not unambitious (rough seas ahead)

• Type and resource safety
• No leaks
• No dangling pointers

• No bad accesses
• No range errors
• No use of uninitialized objects
• No misuse of

• Casts
• Unions

• We think we can do it
• At scale

• 4+ million C++ Programmers, N billion lines of code
• Zero-overhead principle
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Questions?

• Type- and Resource-safe C++
• No garbage collector (because there is no garbage to collect)
• No runtime overheads (Except necessary range checks)
• No new limits on expressibility
• ISO C++
• Simpler code
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Current state: the game is changing dramatically

• Papers
• B. Stroustrup, H. Sutter, G. Dos Reis: A brief introduction to C++'s model for type- and resource-safety.
• H. Sutter and N. MacIntosh: Preventing Leaks and Dangling
• T. Ramananandro, G. Dos Reis, X Leroy: A Mechanized Semantics for C++ Object Construction and 

Destruction, with Applications to Resource Management

• Code (MIT license)
• https://github.com/isocpp/CppCoreGuidelines
• https://github.com/microsoft/gsl
• Static analysis: experimental versions available (Microsoft)

• Videos
• B. Stroustrup: : Writing Good C++ 14
• H. Sutter: Writing good C++ 14 By Default
• G. Dos Reis: Contracts for Dependable C++
• N. MacIntosh: Static analysis and C++: more than lint
• N. MacIntosh: A few good types: Evolving array_view and string_view for safe C++ code
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C++ Information
• The C++ Foundation: www.isocpp.org

• Standards information, articles, user-group information

• Bjarne Stroustrup: www.stroustrup.com
• Publication list, C++ libraries, FAQs, etc.
• A Tour of C++ (2nd edition): All of C++ in 240 pages
• The C++ Programming Language (4th edition): All of C++ in 1,300 pages
• Programming: Principles and Practice using C++ (2nd edition): A textbook

• The ISO C++ Standards Committee: www.open-std.org/jtc1/sc22/wg21/
• All committee documents (incl. proposals)

• Videos
• Cppcon: https://www.youtube.com/user/CppCon 2014, 2015
• Going Native: http://channel9.msdn.com/Events/GoingNative/ 2012, 2013

• Guidelines: https://github.com/isocpp/CppCoreGuidelines
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