

C bare metal
programming on ARM

with Xilinx
Microcontrollers

Presented by

Matteo Facchinetti
Embedded Systems Engineer for

Sirius Electronic Systems

facmatteo@gmail.com

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

Topics
● HW / SW equipment
● XSDK
● Bare-Metal programming intro

– Register access
– HW interrupt handler

● Example: gpio
– HW / SW Description
– Organize the code in memory: linker script
– Boot sequence and C startup code

HW equipment

● Microcontroller:
Xilinx Z-7020

Dual-Core ARMCortex-A9
866 MHz (Zynq 7000 SoC)

+
FPGA Artix-7 85K Logic Cells

● Board:
Digilent ZYBO

● FPGA IDE:
– Vivado

HW equipment

● Zync SoC

SW equipment

● IDE:
– Xilinx SDK

● Eclipse + plugin Xilinx
● Toolchain GCC for

Armv7 Cortex-A:
– Linux
– Bare Metal

SW equipment

● IDE:
– Xilinx SDK

– Gitlab docker build image

https://gitlab.com/teox/petalinux-tools-docker

For legal distribution reasons, the Petalinux Tools files cannot
be included with any public materials. To obtain a free legal
copy of the PetaLinux 2018.2 Installer, please download it from
the Xilinx website.

For the same reason you cannot push this Petalinux Docker
image to the Docker Hub

XSDK

Toolchain features
● arm-none-eabi-gcc

– -mcpu=cortex-a9

– -mfpu=vfpv3

– -mfloat-abi=hard

● GCC version 7.2.1 20171011

– Build Linaro GCC 7.2-
2017.11-rc1

– Thread model: single

XSDK

Workspace structure:
● zybo_gpio_hw:

– hw init startup code
– system desc: hdf file

● zybo_gpio_standalone_bsp:
– Libraries configured for a

specific HW
● zybo_gpio_standalone_app:

– User application that use a
specific BSP (Board
Support Package)

XSDK

Base system library

● standard input/output
● access to processor HW features
● HW debug feature: I/O request from

application to a host running a
debugger

● Device drivers for all SoC (libxil.a)

This libraries are automatically included when
create a “standalone” BSP

XSDK

Additional Libraries

● Xilpm: power menagement

● Xilrsa: RSA

● Xilskey: secure key

● Libmetal
● Openamp
● Lwip: stack TCP/IP

● Xilffs: fat file system

● Xilflash: flash raw func

● Xilsf: Xilinx in System Flash

● Xilmfs: memory file system

XSDK

At work:
● create a simple

application with a related
BSP.
– (echo server)

● tour into workspace

Bare-Metal programming intro

● registers access
– Direct Mapped Memory to access I/O

peripheral registry

● HW interrupt handlers
– No Operative System, so there's only

a main process interrupted from HW

Direct Mapped Registry Access

● The easiest way:
– Pointers to fixed address

● “External factors” could change memory, so it
must be labeled as volatile

● Register address is const because can't change

#define REGBASE 0x40000000

unsigned int volatile * const reg = (unsigned int *) REGBASE;

reg = value; / write to port */

value = *reg; /* read from port */

Direct Mapped Registry Access
● Group of registers

– Using define to simplify the code

#define TIMER_REG_BASE 0x40000000

#define TmLoad ((volatile unsigned int *) TIMER_REG_BASE) /* 32 bits */

#define TmValue ((volatile unsigned short *)(TIMER_REG_BASE + 0x04)) /* 16 bits */

#define TmClear ((volatile unsigned char *)(TIMER_REG_BASE + 0x08)) /* 8 bits */

unsigned short short_val;

*TmLoad = (unsigned int) 0xF00FF00F;

short_val = *PortValue;

*TmClear = (unsigned char) 0x1F;

Warning!
● define directive depends from the

compiler

● could cause incomprehensible
compiler errors.

Direct Mapped Registry Access
● Group of registers

– Using struct to improve portability

#define TIMER_REG_BASE 0x40000000

struct TimerRegs {

 unsigned int Load; /* offset 0 */

 unsigned short Value; /* offset 4 */

 unsigned short dummy1;

 unsigned char Clear; /* offset 8 */

 Unsigned char dummy2[3];

};

volatile struct TimerRegs *tm = (struct TimerRegs *) TIMER_REG_BASE

tm->Load = (unsigned int) 0xF00FF00F;

HW interrupt handlers

● Interrupt vector mechanism

HW interrupt handlers

● Interrupt vector mechanism:
– stop CPU for a HW event
– save the PC of the next instruction on the

stack
– jumps to the memory location of the

interrupt vector table
– gets the ISR (Interrupt Service Routine)

address from the vector table and jumps
to it

– execute the ISR code and restore the
previews PC.

HW interrupt handlers

● Register a Interrupt Service Routine

Generic Interrupt Controller (GIC) driver

XScuGic_Connect(InterruptController, 61, IRQHandler, InterruptController);

XScuGic_Enable(InterruptController, 61);

void IRQHandler(void *CallbackRef) {

 print("RcfgModuleC IRQ Received!\n\r");

}

Example: gpio

● HW description

Example: gpio

● HW description

MIO7: LED MIO51: SWITCH

Example gpio

● SW description
– gpio initialization

#define OUTPUT_PIN 07 /* MIO7 */

#define INPUT_PIN 51 /* MIO51 */

/* init */

ConfigPtr = XGpioPs_LookupConfig(GPIO_DEVICE_ID);

XGpioPs_CfgInitialize(&GpioPs, ConfigPtr, ConfigPtr->BaseAddr);

/* config LED */

XGpioPs_SetDirectionPin(&GpioPs, OUTPUT_PIN, 1);

XGpioPs_SetOutputEnablePin(&GpioPs, OUTPUT_PIN, 1);

/* config SWITCH */

XGpioPs_SetDirectionPin(&GpioPs, INPUT_PIN, 0);

Example gpio

● SW description
– main loop

printf("GPIO MMIO SWITCH LED start...\n");

while (1) {

 uint32_t data = XGpioPs_ReadPin(&GpioPs, INPUT_PIN);

 XGpioPs_WritePin(&GpioPs, OUTPUT_PIN, data);

 if (data)

 printf("Hello World %ld\n\r", cnt++);

}

printf("GPIO MMIO SWITCH LED stop...\n");

Example gpio

● Linker script

Example gpio

● Linker script
– memory regions

/* Define Memories in the system */

MEMORY

{

 ps7_ddr_0 : ORIGIN = 0x100000, LENGTH = 0x3FF00000

 ps7_qspi_linear_0 : ORIGIN = 0xFC000000, LENGTH = 0x1000000

 ps7_ram_0 : ORIGIN = 0x0, LENGTH = 0x30000

 ps7_ram_1 : ORIGIN = 0xFFFF0000, LENGTH = 0xFE00

}

Example gpio

● Linker script
– sections

...

.bss (NOLOAD) : {

 __bss_start = .;

 *(.bss)

 (.bss.)

 (.gnu.linkonce.b.)

 *(COMMON)

 __bss_end = .;

} > ps7_ddr_0

...

__bss_start and __bss_end are
symbols defined here and is possible
to use in your application

all parts *(...) give instruction to GCC
where place these sections of the
ELF binary code format

> ps7_ddr0 give instruction to GCC
to append .bss section to the DDR at
the first aligned free space next to
the previous section.

Example gpio

● Boot sequence

boot.S → xil-crt0.S → main()

boot.S and xil-crt0.S are part of BSP standalone

Example gpio

● boot.S

● init low level CPU features
– disable MMU...cache...

● jump to C startup code

Example gpio

● xil-crt0.S
● init ELF sections required by C

– .bss and others
● init low level feature needed by libxil.a

– AMP – PROFILING stuff
● jump to C main function

XSDK

At work:
● tour into example gpio

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

